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SOLVING PROBLEMS OF ELASTICITY OF CONICAL SHELLS

UDC 539.3B. V. Nerubailo and L. G. Smirnov

The problem of a local action of normal pressure on a thin circular shell is solved by the method
of asymptotic synthesis. A conical shell under the action of local radial loads is considered as an
example.

Key words: method of analytical synthesis, conical shell, local action.

Introduction. In the method of asymptotic synthesis of the stress state [1], based on “matching” of solutions
of approximate equations [2], the stress–strain state of a shell is presented as the sum of the principal state, simple
edge effect, and bending stress state. These states are described by differential equations with variable coefficients of
lower order and a simpler structure than the initial system of differential equations of the general theory of conical
shells [3]. The problem reduces to linear differential equations with polynomial coefficients; hence, it is convenient
to seek for the solution of the corresponding homogeneous equations in the form of power series. In the case of the
bending state, independent solutions of the homogeneous equation are simple power functions. If all independent
solutions of the homogeneous equations are known, one can use the Green function to construct particular solutions
corresponding to various force actions reflected in the right side of the problem equation. To calculate the principal
state, the particular solution is sought in the form of power series by means of expansion of the right side into a
power series with a prior approximation of the Heaviside functions and their derivatives in the right side by power
series with an approximate representation of the delta function. The technique applied to calculate the principal
state can also be used for the bending state and edge effect. If the solutions of the homogeneous equation are known,
the Green function for linear differential equations can be readily found by simple procedures, which was taken into
account in calculating the edge effect in the present work. In the case of the bending state, the Mellin transform
allows one to obtain a simple particular analytical solution. The Mellin transform is also used to calculate the edge
effect.

1. Formulation of the Problem. We consider a conical shell with the following elastic and geometric
characteristics: Young’s modulus E, Poisson’s ratio ν, shell thickness h, angle between the meridional line and
cone centerline θ, coordinate along the meridional line r, circular coordinate β, and r-coordinates (r0 and R0)
corresponding to the end sections of the shell (r0 < R0); the normal pressure acts on the interval r1 � r � r2.

It is assumed that piecewise-constant normal pressure q0 acts on k rectangular domains in the coordinate
system (r, β); these domains are uniformly distributed along the shell contour (Fig. 1).

The load q(r, β) can be represented as a series

q(r, β) = q(r)
∞∑

n=0

ϕn cos (knβ),

where q(r) = q0ϕ(r), ϕ(r) = Ω(r − r1) − Ω(r − r2), ϕ0 = kβ0/π, ϕn = (2/πn) sin (knβ0) (n = 1, 2, 3, . . . ,∞,
k = 1, 2, 3, . . . , kβ0 � π), and Ω(r − r1) and Ω(r − r2) are the Heaviside functions.

Note that the contribution of each elementary stress state can be different in determining a particular force
factor and displacement. Thus, for n < n∗ (n∗ is a certain integer), the longitudinal and shear forces are determined

Moscow State Aviation Institute (Technical University), Moscow 125871; prof nebo@mail.ru, borisn@km.ru.
Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 5, pp. 150–165, September–October,
2005. Original article submitted August 26, 2003; revision submitted November 30, 2004.

740 0021-8944/05/4605-0740 c© 2005 Springer Science + Business Media, Inc.



o

o

q
0

r=r0r

O

r=R0

r=r1
r=r2

Fig. 1

by the principal state, the circumferential force is determined by the edge effect, and the bending moments and
normal displacements are determined by both factors [4].

2. Principal State of the Shell. If we use the circumferential displacement V (r, β) as the resolving
function of the principal state and expand it into a series in terms of the circumferential coordinate β as

V (r, β) =
n∗∑

n=1

Vn(r) sin (knβ),

we can write a differential equation for the amplitudes Vn(r) [5]

d2

dr2

{
r
[
tan 2 θ + 12(1 − ν2)

r2

h2

]d2Vn

dr2

}
− 2µ2

n tan θ
[d2Vn

rdr2
+

d2

dr2

(Vn

r

)]
+ 4µ4

n

Vn

r3

=
q0
D
ϕnkn

{ d

dr
(r2ϕ(r)) −

( k2n2

sin2 θ
− 1

)
rϕ(r)

}
, (1)

where

µ4
n =

k4n4(k2n2 − 1)2

4 sin6 θ cos2 θ
; Vn = Vn(r); D =

Eh3

12(1 − ν2)
.

We introduce the following notation: a1 = tan 2 θ, a2 = 12(1− ν2)/h2, a3 = 2µ2
n tan θ, and a4 = 4µ4

n. Then,
Eq. (1) acquires the form

d2

dr2

{
r(a1 + a2r

2)
d2Vn

dr2

}
− a3

{d2Vn

r dr2
+

d2

dr2

(Vn

r

)}
+ a4

Vn

r3
= f(r). (2)

The right side of Eq. (1) is designated in Eq. (2) by f(r).
We seek for the solution of Eq. (2) in the form

Vn(r) = Ṽn(r) + V̂n(r), (3)

where Ṽn(r) is the solution of a homogeneous equation corresponding to Eq. (2) and V̂n(r) is some particular solution
of Eq. (2).

The solution of the homogeneous equation (since it is linear and has the fourth order) is represented as the
sum

Ṽn(r) =
4∑

s=1

Csfs(r), (4)

where fs(r) are some linearly independent solutions of the homogeneous equation and Cs are arbitrary constants
(s = 1, 2, 3, 4). We seek for the functions fs(r) in the form of the series
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fs(r) =
∞∑

m=1

b(s)m (r − a)m =
∞∑

m=0

b(s)m ξm = f∗
s (ξ), (5)

where a is a certain positive number (a > r0).
Thus, with the use of the variable ξ = r − a, the homogeneous equation corresponding to Eq. (2) can be

written in the form

[a1(ξ + a)4 + a2(ξ + a)6]
d4V ∗

n

dξ4
+ 2[a1(ξ + a)3 + 3a2(ξ + a)5]

d3V ∗
n

dξ3

+ [6a2(ξ + a)4 − 2a3(ξ + a)2]
d2V ∗

n

dξ2
+ 2a3(ξ + a)

dV ∗
n

dξ
− (2a3 − a4)V ∗

n = 0 (6)

or

P4(ξ)
d4V ∗

n

dξ4
+ P3(ξ)

d3V ∗
n

dξ3
+ P2(ξ)

d2V ∗
n

dξ2
+ P1(ξ)

dV ∗
n

dξ
+ P0(ξ)V ∗

n = 0, (7)

where P4(ξ) = a2ξ
6+6aa2ξ

5+(a1+15a2a2)ξ4+(4aa1+20a3a2)ξ3+(6a2a1+15a4a2)ξ2+(4a3a1+6a5a2)ξ+a4a1+a6a2,
P3(ξ) = 6a2ξ

5 + 30aa2ξ
4 + (2a1 + 60a2a2)ξ3 + (6aa1 + 60a3a2)ξ2 + (6a2a1 + 30a4a2)ξ + 2a3a1 + 6a5a2, P2(ξ)

= 6a2ξ
4+24aa2ξ

3+(36a2a2−2a3)ξ2+(24a3a2−4aa3)ξ+6a4a2−2a2a3, P1(ξ) = 2a3ξ+2aa3, and P0(ξ) = −2a3+a4.
Substituting expression (5) into (6) and (7) and equating the coefficients at ξm to zero, we obtain the relation

A(1)
m bm−2 +A(2)

m bm−1 +A(3)
m bm +A(4)

m bm+1 +A(5)
m bm+2 +A(6)

m bm+3 +A(7)
m bm+4 = 0, (8)

where

A(1)
m = (m− 1)(m− 2)2(m− 3)a2, A(2)

m = 6aa2(m− 1)3(m− 2),

A(3)
m = a1m(m− 1)2(m− 2) + 3a2a2m(m− 1)(5m2 − 5m+ 2) − 2a3(m− 1)2 + a4,

A(4)
m = 2aa1(m− 1)m(m+ 1)(2m+ 1) + 4a3a2m(m+ 1)(5m2 + 1) − 2a3(m+ 1)(2m− 1),

A(5)
m = 6a2a1m

2(m+ 1)(m+ 2) + 3a4a2(m+ 1)(m+ 2)(5m2 + 5m+ 2) − 2a2a3(m+ 1)(m+ 2),
(9)

A(6)
m = 2a3a1(m+ 1)(m+ 2)(m+ 3)(2m+ 1) + 6a5a2(m+ 1)2(m+ 2)(m+ 3),

A(7)
m = (a4a1 + a6a2)(m+ 1)(m+ 2)(m+ 3)(m+ 4).

We write Eq. (8) in the form

bm+4 = −[A(6)
m bm+3 +A(5)

m bm+2 +A(4)
m bm+1 +A(3)

m bm +A(2)
m bm−1 +A(1)

m bm−2]/A(7)
m . (10)

As A(7)
m = 0 for m = −1, −2, −3, and −4 (b−1 = b−2 = 0), assuming that b(1)0 = C1, b

(2)
1 = C2, b

(3)
2 = C3,

and b
(4)
3 = C4 [Cs are constants in Eq. (4)], we can use formulas (9) and (10) to obtain four sequences of the

coefficients b(s)m (s = 1, 2, 3, 4; m = ms,ms + 1, . . . ,∞), which determine four functions fs(r) — independent
solutions of the homogeneous equation, which follows from their construction.

Thus, the general solution of the homogeneous equation has the form

Ṽn(r) = Ṽ ∗
n (ξ) =

4∑

s=1

Csfs(ξ).

To find some particular solution of the equation

P4(ξ)
d4V ∗

n

dξ4
+ P3(ξ)

d3V ∗
n

dξ3
+ P2(ξ)

d2V ∗
n

dξ2
+ P1(ξ)

dV ∗
n

dξ
+ P0(ξ)V ∗

n = f∗(ξ), (11)

where

f∗(ξ) = Bn

{ d

dξ
[(ξ + a)2ϕ(ξ + a)] −

( k2n2

sin2 θ
− 1

)
(ξ + a)ϕ(ξ + a)

}
; Bn =

q0
D
knϕn,

we use the approximate representation for the δ function [6]
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δ(ξ − ξ0) ≈
√
α/π exp (−α(ξ − ξ0)2) = δ̄(ξ − ξ0) (12)

(α is a certain positive quantity [6]).
The expansion for δ(ξ − ξ0) in (12) can be presented as

δ(ξ − ξ0) =
√
α/π [1 − α(ξ − ξ0)2/1! + α2(ξ − ξ0)4/2!− . . . ]. (13)

The function f(r) = f∗(ξ) can be written as

f(r) = f∗(ξ) = Bn{(k2n2/ sin2 θ − ξ)(ξ + a)[Ω(ξ − ξ2) − Ω(ξ − ξ1)

+ (ξ + a)2[δ(ξ − ξ1) − δ(ξ − ξ2)]]} (ξj = r − rj ; j = 1, 2).

For the approximate representation of the Heaviside function, Eq. (13) yields

Ω(ξ − ξ0) =

ξ∫

−∞
δ(ζ − ζ0) dζ =

√
α

π

[
(ξ − ξ0) − α(ξ − ξ0)3

3 · 1!
+
α2(ξ − ξ0)5

5 · 2!
− . . . ]

=
√
α

π

∞∑

n=0

(−α)n(ξ − ξ0)2n+1

(2n+ 1)n!
. (14)

Expanding f∗(ξ) into a Taylor series, with allowance for Eqs. (13) and (14), we obtain

f∗(ξ) =
∞∑

m=1

dm

m!
ξm, dm = d(1)

m + d(2)
m + d(3)

m + d(4)
m + d(5)

m ,

where

d(1)
m =

√
α

π
Bn

( k2n2

sin2 θ
− 3

)
a

∞∑

j=0

D
(1)
m [(−ξ2)2j+1−m − (−ξ1)2j+1−m](−α)j

(2j + 1)j!
;

d(2)
m =

√
α

π
Bn

( k2n2

sin2 θ
− 3

) ∞∑

j=0

D
(2)
m [(−ξ2)2j+2−m − (−ξ1)2j+2−m](−α)j

j!(2j + 1)
;

d(3)
m =

√
α

π
a2

∞∑

j=0

D
(3)
m [(−ξ1)2j−m − (−ξ2)2j−m](−α)j

j!
;

d(4)
m = 2

√
α

π
a

∞∑

j=0

D
(4)
m [(−ξ1)2j−m+1 − (−ξ2)2j−m+1](−α)j

j!
;

d(5)
m =

√
α

π

∞∑

j=0

D
(5)
m [(−ξ1)2j−m+2 − (−ξ2)2j−m+2]

j!
;

D(1)
m = D(2)

m = D(3)
m = D(4)

m = D(5)
m = 1 at m = 0;

D(1)
m = (2j + 1)2j(2j − 1) · · · (2j −m+ 1),

D(2)
m = (2j + 1)2j(2j − 1) · · · (2j −m+ 2),

D(3)
m = 2j(2j − 1) · · · (2j −m+ 1), D(4)

m = 2j(2j − 1) · · · (2j −m+ 2),

D(5)
m = 2j(2j − 1) · · · (2j −m+ 3) for m � 1.

Substituting now the expansion for the function f∗(ξ) into Eq. (11) and the expansion for the particular
solution of the form
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V̂ ∗
n (ξ) =

∞∑

m=0

C′
mξ

m

and equating the coefficients at ξm in the right and left sides of the new equality, we obtain equations for determining
the unknown coefficients C′

m:

A(1)
m C′

m−2 +A(2)
m C′

m−1 +A(3)
m C′

m +A(4)
m C′

m+1 +A(5)
m C′

m+2A
(6)
m C′

m+3 +A(7)
m C′

m+4 = d′m (15)

(m = 0, 1, 2, . . . ; C′
−1 = C′

−2 = 0; d′m = dm/m!).

Assuming that C′
0 = C′

1 = C′
2 = C′

3 = 0, we can obtain one of the particular solutions of the infinite system of
equations (15) in a recurrent manner from relations (15).

Thus, with accuracy to arbitrary constants, we found the solution [see Eq. (3)]

Vn(r) =
4∑

j=1

Cj Ṽnj(r) + V̂n(r),

in which Cj are unknown constants and Ṽnj(r) are independent solutions of the homogeneous equation (j = 1, 2, 3, 4).
The displacements, normal forces, and bending moments are determined by the following formulas:

V (r, β) =
n∗∑

n

Vn(r) sin (knβ),

u(r, β) =
sin θ
k

n∗∑

n

1
n

(
r
dVn

dr
− Vn

)
cos (knβ),

w(r, β) =
n∗∑

n

[( sin2 θ

kn
− kn

)
Vn − sin2 θ

kn
r
dVn

dr

]
cos (knβ),

T1(r, β) = Eh
sin θ
k

n∗∑

n

r

n

d2Vn

dr2
cos (knβ), (16)

G1(r, β) =
D

cos θ

n∗∑

n

[(
kn+

sin2 θ

kn

)d2Vn

dr2
+
r sin2 θ

kn

d3Vn

dr3

]
cos (knβ),

G2(r, β) =
D

cos θ

n∗∑

n

[sin2 θ

kn

d2Vn

dr2
− kn(k2n2 − 1)

r2 sin2 θ

]
cos (knβ);

summation in (16) is performed from n = 1 for k � 2 and from n = 2 for k = 1 to n = n∗ [4].
To find the unknown constants Cs (s = 1, 2, 3, 4) in (4), we have to use four boundary conditions, which can

have different forms. Substituting V (r, β) into the boundary conditions, which are linear in terms of r, we obtain
4∑

s=1

CsL̄1[Ṽnj(r0)] + L̄1[V̂n(r0)] = 0,
4∑

s=1

CsL̄2[Ṽnj(r0)] + L̄2[V̂n(r0)] = 0,

4∑

s=1

CsL̄3[Ṽnj(R0)] + L̄3[V̂n(R0)] = 0,
4∑

s=1

CsL̄4[Ṽnj(R0)] + L̄4[V̂n(R0)] = 0.
(17)

Here L̄1 and L̄2 are the operators of the boundary conditions for r = r0; L̄3 and L̄4 are the operators of the
boundary conditions for r = R0. Conditions (17) are a system of linear algebraic equations with respect to Cs.

Concerning the convergence of series (5), it should be noted that their convergence on the interval (r0, R0)
(shell boundaries) is observed at least for all a > r0, which directly follows from Eqs. (9) and (10).
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3. Edge Effect. The differential equation for the edge effect under the action of the radial load q(r, β) has
the form [5]

d

dr

{
r
d

dr

[1
r

d

dr

(
r
dw

dr

)]}
+

12(1 − ν2)
h2r tan 2 θ

w =
r

D
ϕnq(r). (18)

As in the case of the principal state, we write the solution of Eq. (18) as the sum of the solution of the
homogeneous equation and the particular solution:

w(r) = w̃(r) + ŵ(r).

The homogeneous equation corresponding to (18) can be rewritten as

r3
d4w

dr4
+ 2r2

d3w

dr3
− r

d2w

dr2
+
dw

dr
+ ηrw = 0, η =

12(1 − ν2)
h2 tan 2 θ

. (19)

We seek for the solution w̃(r) in the form of the series

w̃(r) =
∞∑

n=0

an(r − a)n =
∞∑

n=0

anξ
n = w̃∗(ξ), (20)

where a is a certain positive number (a > r0).
Substituting r = ξ + a into Eq. (19), we obtain

(ξ3+3aξ2+3a2ξ+a3)
d4w∗(ξ)
dξ4

+ 2(ξ2 + 2aξ + a2)
d3w∗(ξ)
dξ3

− (ξ + a)
d2w∗(ξ)
dξ2

+
dw∗(ξ)
dξ

+η(ξ + a)w∗(ξ) = 0. (21)

Substituting (20) into (21) and equating the coefficients at ξn to zero, we find the relation

a3(n+ 1)(n+ 2)(n+ 3)(n+ 4)an+4 + a2(n+ 1)(n+ 2)(n+ 3)(3n+ 2)an+3

+ a(n+ 1)(n+ 2)[(3n− 1)n− 1]an+2 + (n2 − 1)2an+1 + ηaan + ηan−1 = 0.

Hence, we have

an+4 = −{a2(n+ 1)(n+ 2)(n+ 3)(3n+ 2)an+3 + a(n+ 1)(n+ 2)[(3n− 1)n− 1]an+2

+ (n2 − 1)2an+1 + ηaan + ηan−1}/[a3(n+ 1)(n+ 2)(n+ 3)(n+ 4)]. (22)

As the nominator in the right side of Eq. (22) equal zero for n = −4, −3, −2, and −1, the coefficients a0,
a1, a2, and a3 can be assumed to be arbitrary constants: as−1 = Cs (s = 1, 2, 3, and 4). Then, the coef-
ficients a(s)

n (s = 1, 2, 3, and 4) are found from the recurrent formula (22) with accuracy to an arbitrary set
Cs = {(C1, 0, 0, 0), (0, C2, 0, 0), (0, 0, C3, 0), (0, 0, 0, C4)}; any element of the set Cs can be used as the coefficient a0,
a1, a2, or a3.

Thus, the resultant solution of the homogeneous equation acquires the form

w̃∗(ξ) =
4∑

s=1

Csw̃
∗
s(ξ),

where the functions w̃∗
s(ξ) =

∞∑

n=s−1

a(s)
n ξn are independent solutions, which follows from their construction.

It follows from Eq. (22) that these series converge at the interval [r0, R0], at least for a > r0.
To obtain the solution of the heterogeneous equation, we apply the Mellin transform [7] to both sides of

Eq. (18); for this purpose, we use the formulas related to the Mellin transform [8]

tg′(t) ÷−pg(p), t2g′′(t) ÷ p(p+ 1)G(p),

t3g′′′(t) ÷−p(p+ 1)(p+ 2)G(p), t4gIV (t) ÷ p(p+ 1)(p+ 2)(p+ 3)G(p),
(23)

where G(p) is the Mellin transform of the function g(t):

G(p) =

∞∫

0

g(t)tp−1 dt.
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Passing to the new variable ξ = r/(αr0), we can write Eq. (18) in the form

ξ
d

dξ

{
ξ
d

dξ

[ d

ξdξ

[
ξ
dw∗(ξ)
dξ

]]}
+ w∗(ξ) = γξ2q∗(ξ), (24)

where α = h tan θ/
√

12(1 − ν2), γ = (h2 tan 2 θ/(12(1 − ν2)D)α2ϕn, q∗(ξ) = q0 for r1/(αr0) � ξ � r2/(αr0), and
q∗(ξ) = 0 for all other ξ.

Applying the Mellin transform to both sides of Eq. (24) and taking into account Eq. (23), we find

p2(p− 2)2G(p− 2) +G(p) = F (p), (25)

where

G(p) =

∞∫

0

ŵ∗(ξ)ξp−1 dξ; F (p) =

∞∫

0

γξ2q∗(ξ)ξp−1 dξ = γ

ξ2∫

ξ1

ξp+1 dξ = γ
ξp+2
2 − ξp+2

1

p+ 2
.

If we use the procedure described in [9, 10], where a factor ε (small positive quantity) is introduced in the
second term in the left side of Eq. (25), then, instead of (25), we have

p2(p− 2)2G(p− 2) + εG(p) = F (p). (26)

Seeking for G(p) in the form of the series

G(p) =
∞∑

0

Gs(p)εs (27)

and substituting (27) into equality (26), we find

p2(p− 2)G0(p− 2) = F (p), p2(p− 2)2Gs(p− 2) +Gs−1(p) = 0 (s = 1, 2, 3, . . . ). (28)

It follows from Eq. (28) that

G0(p) =
F (p+ 2)
p2(p+ 2)2

, Gs(p) = −Gs−1(p+ 2)
p2(p+ 2)2

. (29)

Now, using equalities (29), we obtain

Gs(p) = (−1)sF (p+ 2s+ 2)/A(p, s), (30)

where A(p, s) = p2
s∏

j=1

(p+ 2j)4(p+ 2s+ 2)2 (s = 1, 2, . . . ) and A(p, 0) = p2(p+ 2)2.

It follows from Eq. (30) that the functions Gs(p) are holomorphic for Re p � 0, except for multiple poles at
the points pj = −2j (j = 1, 2, . . . , s), p0 = 0, and ps+1 = −2s− 2.

The inverse Mellin transform can be written as

ŵ∗(ξ) =
1

2πi

τ+i∞∫

τ−i∞
Gs(p)ξ−p dp =

(−1)s

2πi

τ+i∞∫

τ−i∞

F (p+ 2s+ 2)ξ−p

(p+ 2s+ 4)
s∏

j=1

(p+ 2j)4(p+ 2s+ 2)2p2

dp,

where τ = ε is a small positive number; the product in the denominator is omitted for s = 0.
The expression ŵ∗(ξ) acquires the form

ŵ∗(ξ) = ŵ∗(2)(ξ) − ŵ∗(1)(ξ).

Here,

ŵ∗(m)(ξ) =
Bsξ

2s+4
m

2πi

τ+i∞∫

τ−i∞

exp (p ln (ξm/ξ))
p2(p+ 2s+ 2)2(p+ 2s+ 4)χs(p)

dp, (31)

Bs = (−1)sγ; χ0(p) = 1; χs(p) =
s∏

j=1

(p+ 2j)4 (s = 1, 2, . . . ).
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We can easily see that the integrand in (31) satisfies Jordan’s conditions [11]; Re p < −τ in the left half-plane
for ξ < ξm and Re p > −τ in the right half-plane for ξ > ξm. To calculate the residues in integral (31), we use the
formula for the residue of the function f(z), which has a pole of the nth order:

res f(z = a) =
1

(n− 1)!
lim
z→a

{ dn−1

dzn−1
[(z − a)nf(z)]

}
. (32)

Denoting

f(z) =
exp (p ln (ξm/ξ))

p2(p+ 2s+ 2)2(p+ 2s+ 4)χs(p)
,

we find, using Eq. (32), the residues at the points ps. For p0 = 0 (double pole), we obtain

b0 = res f
∣∣∣
p=0

= lim
p→0

d

dp
[p2f(p)] =

d

dp

[ exp (p ln (ξm/ξ))
(p+ 2s+ 4)(p+ 2s+ 2)2χs(p)

]∣∣∣
p=0

. (33)

We use the logarithmic derivative for calculating derivative (33). If ψ(p) = ln f(p), then ψ′(p) = f ′(p)/f(p), and
hence,

b0 = f ′(p)
∣∣∣
p=0

= [ψ′(p)f(p)]
∣∣∣
p=0

. (34)

In our case, we have

ψ(p) = ln f(p) = p ln
ξm
ξ

− ln (p+ 2s+ 4) − 2 ln (p+ 2s+ 2) − 4
s∑

j=1

ln (p+ 2j),

ψ′(p) = ln
ξm
ξ

− 1
p+ 2s+ 4

− 2
p+ 2s+ 2

− 4
s∑

j=1

1
p+ 2j

,

and, as it follows from (34),

b0 =
1

(2s+ 4)(2s+ 2)2χs(0)

(
ln
ξm
ξ

− 1
2s+ 4

− 2
2s+ 2

− 2
s∑

j=1

1
j

)
.

Similarly, for the double pole ps+1 = −2s− 2, we have

bs+1 =
exp (−(2s+ 2) ln (ξm/ξ))
2(2s+ 2)2χs(−2s− 2)

(
ln
ξm
ξ

− 1
2

+
1

s+ 1
− 2

s∑

j=1

1
j − s− 1

)
.

To calculate the residue in the poles ps (s = 1, 2, . . . ), which have the fourth order, we again use the
logarithmic derivative

bj = res f
∣∣∣
p=−2j

=
1
6

lim
p→−2j

d3

dp3
[(p+ 2j)4f(p)] =

[1
6
d3

dp3
f(p)

]∣∣∣
p=−2j

,

where

fj(p) =
exp (p ln (ξm/ξ))

(p+ 2s+ 4)p2(p+ 2s+ 2)2χ(j)
s (p)

; χ(j)
s (p) =

s∏

i=1

(p+ 2i)4 (i �= j).

If ψj(p) = ln fj(p), then

ψ′
j(p) = f ′

j(p)/fj(p), f ′
j(p) = ψ′

j(p)fj(p),

f ′′
j (p) = ψ′′

j (p)fj(p) + ψ′
j(p)f

′
j(p) = {ψ′′

j (p) + [ψ′
j(p)]

2}fj(p),

f ′′′
j (p) = {ψ′′′

j (p) + 3ψ′′
j (p)ψ′

j(p) + [ψ′
j(p)]

3}fj(p) (j = 1, 2, . . . , s).

Hence, we have the expression

bj =
1
6
f ′′′

j (p) =
1
6

Ψj(p)fj(p) = f∗
j (p)

∣∣∣
p=−2j

,
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where

Ψj(p) = ψ′′′
j (p) + 3ψ′′

j (p)ψ′
j(p) + [ψ′

j(p)]
3,

ψ′
j(p) = ln

ξm
ξ

− 1
p+ 2s+ 4

− 2
p
− 2
p+ 2s+ 2

− 4
s∑

i=1

1
p+ 2i

,

ψ′′
j (p) =

1
(p+ 2s+ 4)2

+
2
p2

+
2

(p+ 2s+ 2)2
+ 4

s∑

i=1

1
(p+ 2i)2

,

ψ′′′
j (p) = − 2

(p+ 2s+ 4)3
− 4
p3

− 4
(p+ 2s+ 2)2

− 8
s∑

i=1

1
(p+ 2i)3

(i �= j).

Thus, the residues of the function f(p) are found.
As a result, we obtain

ŵ∗(m)(ξ) = Bsξ
2s+4

[
ξ∗s+2(−2s− 4) + f∗

s+1(−2s− 2) +
s∑

j=1

f∗
j (−2j)

]
(35)

for ξ < ξm (m = 1, 2; s = 1, 2, . . . ) and

ŵ∗(m)(ξ) = −Bsξ
2s+4
m f∗

0 (0)

for ξ > ξm (m = 1, 2; s = 1, 2, . . . ). For s = 0, the sum in expression (35) is absent. The function ŵ∗(ξ) is now
found from Eq. (31).

Note that series (27) with ε = 1, which corresponds to the solution of our problem, converges uniformly
in the entire plane of the complex variable p; this directly follows from Eq. (30). Therefore, the inverse Mellin
transform of series (27) is justified.

Thus, we found the particular solution

ŵ∗(ξ) =
∞∑

s=0

ŵ∗
s(ξ),

and the general solution has the form

w∗(ξ) =
4∑

j=1

Cjw̃
∗
j (ξ) + ŵ∗(ξ). (36)

In (36), the constants Cj (j = 1, 2, 3, 4) are found from the boundary conditions.
If, for instance, the boundary conditions have the form (the shell edges being free)

G1(r) = −D
(d2w

dr2
+ ν

1
r

dw

dr

)∣∣∣
r=r0
r=R0

= −D
(d2w∗

dξ2
+ ν

1
ξ

dw∗

dξ

)∣∣∣
ξ=1
ξ=R0/r0

= 0,

Q1(r) = −D
(d3w

dr3
+

1
r

d2w

dr2
− 1
r2

dw

dr

)∣∣∣
r=r0
r=R0

= −D
(d3w∗

dξ3
+

1
ξ

d2w∗

dr2
− 1
ξ2

dw∗

dξ

)∣∣∣
ξ=1
ξ=R0/r0

= 0,

(37)

then, substituting Eq. (36) into Eq. (37), we obtain a system of linear algebraic equations with respect to Cj

(j = 1, 2, 3, 4):
4∑

j=1

(d2w̃∗
j (ξ)

dξ2
+ ν

1
ξ

dw̃∗
j (ξ)
dξ

)
Cj +

(d2ŵ∗(ξ)
dξ2

+ ν
1
ξ

dŵ∗(ξ)
dξ

)
= 0

(ξ = 1, ξ = R0/r0),

4∑

j=1

(d3w̃∗
j (ξ)

dξ3
+

1
ξ

d2w̃∗
j (ξ)

dξ2
− 1
ξ2

dw̃∗
j (ξ)
dξ

)
Cj +

(d3ŵ∗
j (ξ)

dξ3
+

1
ξ

d2ŵ∗
j (ξ)

dξ2
− 1
ξ2

dŵ∗
j (ξ)
dξ

)
= 0

(ξ = 1, ξ = R0/r0).
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The expressions for the derivatives are rather cumbersome and are not presented here.
As the solutions of the homogeneous equation (18) are readily found, the particular solution can also be

obtained by a famous technique [7] according to which the particular solution is found with the use of the Green
function G(ρ, r) for the initial equation. Then, the particular solution is written as

ŵ(r) =

R0∫

r0

G(r, ρ)V (ρ) dρ, (38)

where V (ρ) is the right side of the initial equation.
To determine the Green function, we use its representation in the form

G(r, ρ) =
4∑

i=1

χi(ρ)w̃i(r)

[w̃i(r) is the solution of the homogeneous equation], and then the functions χi(ρ) are found from a system of linear
equations as functions of the known w̃i(ρ) and their derivatives:

4∑

i=1

χi(ρ)
di

dρi
w̃i(ρ) =

{
0, i � 3,

1/x0(ρ), i = 4

[x0(ρ) is the coefficient at the higher derivative].
In our case, x0(ρ) = ρ2 and V (ρ) = (q0/D)ρ2[Ω(ρ−ρ1)−Ω(ρ−ρ2)]. Being substituted into (38), the solution

found for G(r, ρ) yields the sought particular solution

ŵ(r) =
4∑

i=1

w̃i(r)

r∫

r0

χi(ρ)V (ρ) dρ =
4∑

i=1

w̃i(r)

r∫

r1

χi(ρ)V (ρ) dρ.

4. Bending State of the Shell. The differential equation that describes the bending state of the conical
shell is written with respect to the radial displacement of the shell w(r) and has the form of the Euler equation:

r4
d4w

dr4
+ 2r3

d3w

dr3
− (1 + 2k2n2)r2

d2w

dr2
+ (1 + 2k2n2)r

dw

dr
+ k2n2(k2n2 − 4) =

r4

D
q0ϕnϕ(r). (39)

In accordance with the asymptotic synthesis method, the stress–strain state is constructed for harmonics with
numbers n > n∗, where n∗ is found by the formula derived in [2, p. 284].

The sought solution of the equation is presented as the sum of the solution of the homogeneous equation w̃(r)
and the particular solution ŵ(r):

w(r) = w̃(r) + ŵ(r). (40)

Substituting the function w(r) from (40) presented in the form of the series

w(r) =
∞∑

−∞
amr

m

into Eq. (39) with the zero right side, we obtain the equation for m:

P4(m) = m(m− 1)(m− 2)(m− 3) + 2m(m− 1)(m− 2) − (1 + 2k2n2)m(m− 1)

+ (1 + 2k2n2)m+ k2n2(k2n2 − 4) = 0. (41)

Obviously, the solution of the homogeneous equation can be written as

w̃(r) = C1r
λ1 + C2r

λ2 + C3r
λ3 + C4r

λ4 ,

where λj (j = 1, 2, 3, 4) are the roots of Eq. (41) and Cj are arbitrary constants.
To find the solution of the heterogeneous equation ŵ(r), we apply the Mellin transform to both sides of

Eq. (39) with a prior substitution of the variable r = r0ξ or introduce a new variable ξ = r/r0:

ξ4
d4w∗

dξ4
+ 2ξ3

d3w∗

dξ3
− (1 + 2k2n2)ξ2

d2w∗

dξ2
+ (1 + 2k2n2)ξ

dw∗

dξ
+ k2n2(k2n2 − 4)w∗ =

q0r
4
0

D
ξ4ϕnϕ(ξ). (42)

Here w∗ = w∗(ξ) = w(r0ξ).
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Then, applying the Mellin transform to both parts of Eq. (42), we obtain

P4(p)w̃(p) = g̃(p), (43)

where g̃(p) is the Mellin transform for the function g(ξ) = q0r
4
0(ϕn/D)ϕ(ξ)ξ4 = bnξ

4ϕ(ξ):

g̃(p) =

∞∫

0

g(ξ)ξp−1 dξ =

ξ2∫

ξ1

bnξ
p+3[Ω(ξ − ξ1) − Ω(ξ − ξ2)] dξ =

bn(ξp+4
2 − ξp+4

1 )
p+ 4

.

Here ξj = r/r0 and Ω(ξ) is the Heaviside function.
It follows from equality (43) that

w̃(p) = g̃(p)/P4(p).

Let us now prove that two roots λj of Eq. (41) lie in the right half-plane of the complex plane and two other
roots lie in the left half-plane. The proof directly follows from the Vyshnegradskii–Nyquist theorem [11] formulated
below.

Theorem 1. The number of roots of the function f(z, ζ) = P1(z)ζ − P2(z) in the left half-plane for ζ = ζ0
is

K(ζ0) = (2π)−1∆Γ arg (ζ0 − ζ) +m+ k1, (44)

where P1(z) and P2(z) are polynomials (z = x + iy), Γ is the hodograph of the function ζ(z) = P2(z)/P1(z) for y
increasing from −∞ to +∞ and x = 0, k1 is the number of roots of the polynomial P1(z) in the left half-plane,
m = n2 − n1 (n2 > n1), m = 0 (n2 < n1), and n1 and n2 are the powers of the polynomials P1(z) and P2(z),
respectively.

We assume that

P1(z) = z4 − (1 + 2k2n2)z2 + k2n2(k2n2 − 4), P2(z) = 4z3 + (1 − 2k2n2)z,

ζ(z)(z = iy) =
P2(z)
P1(z)

(z = iy) = − 4y3 + (2k2n2 − 1)y
y4 + (1 − 2k2n2)y2 + k2n2(k2n2 − 4)

.

Hence, the hodograph ∆Γ arg (ζ0 − ζ), where ζ0 = 1, equals zero, as is easily seen.
As two roots of the biquadratic equation P1(z) = 0 lie in the left half-plane, i.e., k1 = 2 (m = 0), we find

from Eq. (44) that k1 = 2, i.e., two roots λj lie in the left half-plane, Q.E.D.
We represent the polynomial P4(p) in the form P4(p) = P0(p)P1(p), where the roots of the polynomial P0(p)

lie in the left half-plane (λ1, λ2), and the roots of the polynomial P1(p) lie in the right half-plane (λ3, λ4).
Applying the Mellin transform to both sides of Eq. (42), we obtain

w∗(ξ) =
1

2πi

i∞∫

−i∞

g̃(p)
P4(p)

ξ−p dp =
bn
2πi

i∞∫

−i∞

(ξp+4
2 − ξp+4

1 )ξ−p dp

P4(p)(p+ 4)
=

bn
2πi

i∞∫

−i∞

(ξp+4
2 − ξp+4

1 )ξ−p

(p+ 4)P0(p)P1(p)
dp = [f(ξ, ξ2)−f(ξ, ξ1)].

We calculate the integral

f(ξ, ξj) =
bn
2πi

i∞∫

−i∞

ξp+4
j ξ−p

(p+ 4)P0(p)P1(p)
dp =

bnξ
4
j

2πi

i∞∫

−i∞

exp (p ln (ξj/ξ))
(p+ 4)P0(p)P1(p)

dp (j = 1, 2).

The integrand satisfies the conditions of Jordan’s lemma in the left half-plane of the complex variable p for ξ < ξj
and in the right half-plane for ξ > ξj . The integrand has three simple poles in the left half-plane (p1 = −4, p2 = λ1,
and p3 = λ2) and two simple poles in the right half-plane (p4 = λ3 and p5 = λ4).

Thus, we obtain

f(ξ, ξj) = bnξ
4
j

[ (ξ/ξj)4

P4(−4)
+

(ξ/ξj)λ1

(λ1 + 4)(λ1 − λ2)P1(λ1)
+

(ξ/ξj)λ2

(λ2 + 4)(λ2 − λ1)P1(λ2)

]
, ξ < ξj ,

f(ξ, ξj) = −bnξ4j
[ (ξj/ξ)λ3

P4(λ3)P0(λ3)(λ3 − λ4)
+

(ξj/ξ)λ4

P4(λ4)P0(λ4)(λ4 − λ3)

]
, ξ > ξj .
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We write the sought solution in the form

w(r) = w∗(r0ξ) = w∗(ξ) = f(ξ, ξ2) − f(ξ, ξ1).

To calculate the forces and moments, we have to find expressions for the first three derivatives of the radial
displacement:

dw

dr
=

dw∗

r0 dξ
,

d2w

dr2
=

d2w∗

r20 dξ
2
,

d3w

dr3
=

d3w∗

r30 dr
3
,

d(q)w∗

dξ(q)
=
d(q)f(ξ, ξ2)

dξ(q)
− d(q)f(ξ, ξ1)

dξ(q)
(q = 1, 2, 3, . . . ).

The derivatives of the function f(ξ, ξj) are calculated by the formulas

f ′(ξ, ξj) = bnξ
4
j

[ (4/ξj)(ξ/ξj)3

P4(−4)
+

(λ1/ξj)(ξ/ξj)λ1−1

(λ1 + 4)(λ1 − λ)P1(λ1)
+

(λ2/ξj)(ξ/ξj)λ2−1

(λ2 + 4)(λ1 − λ2)P1(λ2)

]
, ξ < ξj ,

f ′(ξ, ξj) = bnξ
4
j

[ (λ3/ξj)(ξj/ξ)λ3+1

P4(λ3)P0(λ3)(λ3 − λ4)
+

(λ4/ξj)(ξj/ξ)λ4+1

P4(λ4)P0(λ4)(λ4 − λ3)

]
, ξ > ξj ;

f ′′(ξ, ξj) = bnξ
4
j

[ (12/ξ2j )(ξ/ξj)2

P4(−4)
+

(λ1(λ1 − 1)/ξ2j )(ξ/ξj)λ1−2

(λ1 + 4)(λ1 − λ2)P1(λ1)

+
(λ2(λ2 − 1)/ξ2j )(ξ/ξj)λ2−2

(λ2 + 4)(λ2 − λ1)P1(λ2)

]
, ξ < ξj ,

f ′′(ξ, ξj) = −bnξ4j
[ (λ3(λ3 + 1)/ξ2)(ξj/ξ)λ3+2

P4(λ3)P0(λ3)(λ3 − λ4)
+

(λ4(λ4 + 1)/ξ2)(ξj/ξ)λ4+2

(λ4 + 4)(λ4 − λ3)P1(λ4)

]
, ξ > ξj ;

f ′′′(ξ, ξj) = bnξ
4
j

[ (24/ξ3j )(ξ/ξj)
P4(−4)

+
(λ1(λ1 − 1)(λ1 − 2)/ξ3j )(ξ/ξj)λ1−3

(λ1 + 4)(λ1 − λ2)P1(λ1)

+
(λ2(λ2 − 1)(λ2 − 2)/ξ3j )(ξ/ξj)λ2−3

(λ2 + 4)(λ2 − λ1)P1(λ2)

]
, ξ < ξj ,

f ′′′(ξ, ξj) = bnξ
4
j

[ (λ3(λ3 + 1)(λ3 + 2)/ξ3j )(ξj/ξ)λ3+3

P4(λ3)P0(λ3)(λ3 − λ4)

+
(λ4(λ4 + 1)(λ4 + 2)/ξ3j )(ξj/ξ)λ4+3

(λ4 + 4)(λ4 − λ3)P1(λ4)

]
, ξ > ξj .

The general solution has the form

w(r) = w̃(r) + ŵ(r) =
4∑

i=1

Csr
λi + ŵ(r). (45)

For a semi-infinite conical shell, we need to set C3 = C4 = 0. For a finite-length shell with free edges, the
boundary conditions take the form

G1(r) =
[d2w

dr2
+ ν

(1
r

dw

dr
− k2n2

r2
w

)]
r=r0
r=R0

= 0,

Q1(r) =
[ d
dr

(d2w

dr2
+

1
r

dw

dr
− k2n2 w

r2

)]
r=r0
r=R0

= 0.
(46)
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Substituting expressions (45) into (46), we obtain a system of algebraic equations with respect to the con-
stants Cs (s = 1, 2, 3, 4)

4∑

j=1

[λj(λj − 1) + ν(λj − k2n2)]rλj−2
0 Cj = g1,

4∑

j=1

[λ2
j(λj − 2) − k2n2λj + 2k2n2]rλj−3

0 Cj = g2,

4∑

j=1

[λj(λj − 1) + ν(λj − k2n2)]Rλj−2
0 Cj = g3,

(47)

4∑

j=1

[λ2
j (λj − 2) − k2n2λj + 2k2n2]Rλj−3

0 Cj = g4

with the following expressions for the right sides of Eqs. (47):

g1 = − 1
r20

[d2w∗

dξ2
+ ν

(1
ξ

dw∗

dξ
− k2n2

ξ2
w∗

)]∣∣∣
ξ=1
r=r0

,

g2 = − 1
r30

[ d
dξ

(d2w∗

dξ2
+

1
ξ

dw∗

dξ
− k2n2 w

∗

ξ2

)]∣∣∣
ξ=1
r=r0

,

g3 = − 1
r20

[d2w∗

dξ2
+ ν

(1
ξ

dw∗

dξ
− k2n2 w

∗

ξ2

)]∣∣∣
ξ=R0/r0
r=R0

,

g4 = − 1
r30

[ d
dξ

(d2w∗

dξ2
+

1
ξ

dw∗

dξ
− k2n2 w

∗

ξ2

)]∣∣∣
ξ=R0/r0
r=R0

.

Thus, the solution of the problem posed can be assumed to be constructed.
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5. Calculation Example. As an example, we consider a conical shell with free edges (r0 = 585 mm
and R0 = 1585 mm) under the action of two (k = 2) inward-directed local radial loads Q0 whose applications
points are located on one diameter. For regions where the load is uniformly distributed with intensity q0, we have
r1 = 598 mm, r2 = 623 mm, and β0 = 0.125. The diameters of the end faces of the shell are 184 and 556 mm, and
the shell thickness is 1 mm.

The calculation results are plotted in Figs. 2 and 3. Figure 2 shows the longitudinal force T1RQ
−1
0 (R is the

shell radius for r = r0; β = 0) as a function of the longitudinal coordinate r̄ = r − r0 (curve 1), and Fig. 3 shows
the bending moment G2Q

−1
0 versus r̄ (curve 1). Curves 2 in Figs. 2 and 3 refer to the same dependences in the

case the load is applied in the middle of the shell. Note that the axial component arising in the shell owing to the
normal loads Q0 applied is balanced at the larger end face by an infinitesimal distributed stress.

For a hinge-supported conical shell under the action of concentrated forces, the radial displacement was
compared with the results of [2]. The difference in the maximum values of displacements is within 5%.

This work was partly supported by the International Science Foundation (Grant No. N2J300).
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